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Space ROS is an open-source spacecraft flight software framework for developing robotic 
applications for space being developed by NASA, Open Robotics, Blue Origin, and others. It 
is designed to be platform independent, portable and project independent. Space ROS is a 
fork of the ROS 2 framework and conforms to the ROS 2 Application Programming Interface 
(API) that has been hardened to be compatible with the demands of safety-critical space 
robotics applications. The intent of Space ROS is to provide a robust framework for space 
robotic applications where ROS 2 applications can be reused with little to no modification 
enabling the space community to take advantage of the innovation of the ROS community.  
This will shorten the time for development of novel space robotics capabilities, enable reuse of 
capabilities between missions, and lower the life-cycle cost of new robotic missions. This paper 
details the objectives of Space ROS, the motivation for its creation, the approach for its 
development and validation, as well as initial benchmarking results. 

I. Nomenclature 
ROS2 = Robot Operating System 
NPR = NASA Procedural Requirements 
DRA = Design Reference Application 
ARC = Ames Research Center  
GSFC = Goddard Space Flight Center 
DSA = Distributed Space Autonomy 
 

II. Introduction 
 

ROS has enabled unprecedented open-source collaboration on the development of robotics capabilities and 
collaboration between academic, commercial, and government developers. The original ROS implementation had 
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drawbacks in architecture and implementation that made it a challenge to use for demanding and rigorous applications. 
Open Robotics and the ROS community have worked to address these issues with the development of ROS2. Space 
ROS is a collaboration between NASA, Open Robotics, Blue Origin, and others that seeks to expand the capabilities 
of ROS2 into a framework that could be deployed for safety-critical applications in space and leverage the innovation 
from the academic, commercial, and government robotic communities to meet future opportunities and challenges in 
space robotics. The technical advancement of the reusable Space ROS framework and its availability to the space 
industry has the potential to greatly reduce the life cycle costs of space-qualified robots. The Space ROS framework 
seeks to support a variety of robotic systems including rovers, autonomous spacecraft, dexterous manipulators, 
humanoid robots, and multi-robot systems. 

III. Space ROS 

 
Figure 1: Space ROS Roadmap and Objectives 

A. Space ROS Objectives 
The Space ROS team is working to develop a certifiable and reusable robotic framework to meet the needs of 

future space-based robotics applications. This will support many future robotics capabilities and missions as shown in 
Figure 1. A certifiable system is designed to be aligned with flight software standards, focusing on the NASA NPR 
7150.2 as a baseline and so that the framework could be demonstrated to meet or exceed the requirements for use on 
a Class A Mission as defined by the NASA NPR [1]. This includes addressing: 1) Memory Safety; 2) Deterministic 
Performance; 3) Static analysis; 4) System Testing and Evaluation. We plan to develop a fork of ROS 2 and address 
these challenges while maintaining compatibility with the ROS 2 API and enabling ROS 2 applications to be reused 
on Space ROS with little to no modification enabling the space community to take advantage of the development and 
innovation of the larger ROS community. The resulting framework will support characteristic space robotics 
applications while enabling the rapid development of new robotic capabilities and the reuse of capabilities between 
missions. The Space ROS framework is highly aligned with NASA’s published Technology Taxonomy Areas [2], as 
shown in  
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Figure 2, demonstrating the need for such a framework to support future space endeavors. Space ROS will provide 

enabling capabilities addressing needs in Robotics, Autonomy, Guidance, Navigation, and controls as well as 
supporting technologies like simulation and software modeling.  

 
 

 

 

 

 

Figure 2: NASA Technology Taxonomy Areas Addressed with Space ROS 

TX04 Robotic Systems 
4.1 Sensing and Perception 
4.2 Mobility 
4.3 Manipulation 
4.4 Human Robot Interaction 
4.5 Autonomous Rendezvous and 
Docking 
4.6 Robotics Integration 
TX07 Exploration 
Destination Systems 
7.1 ISRU 
7.2 Mission Infrastructure, 
Sustainability, and Supportability 
TX10 Autonomous 
Systems 
10.1 Situational and Self 
Awareness 
10.2 Reasoning and Acting  
10.3 Collaboration and 
Interaction  
10.4 Engineering and Integrity 
TX11 Software, Modeling, 
Simulation, and 
Information Processing 
11.1 Software Development, 
Engineering, and Integrity 
11.2 Simulation  
11.4 Information Processing  
11.5 Mission Architecture, 
Systems Analysis, and Concept 
Development 
TX10 Guidance, 
Navigation, and Control  
10.1 Navigation Technologies 
10.2 Control Technologies 
10.3 GNC Systems Engineering 
Technologies 
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Current mission concepts are using ROS2 as part of their 
development cycle, such as the Regolith Advanced Surface 
Systems Operations Robot (RASSOR) project, shown in 
Figure 3. This generally follows a pattern of implementing a 
robotic platform using ROS2 for control and as a test bed for 
algorithmic development and them transitioning the 
algorithms, once developed and proven effective, to a flight 
certified software platform such as NASA’s cFS once. 
Developing in ROS2 allows for developers to quickly 
implement their system leveraging the power of the ROS 
development community and all the previous development 
work that has been open sourced. Space ROS would enable 
missions to deploy FSW for missions without having to 
perform the second step of converting the algorithms into a 
second framework, reducing cost and development time.  

B. Design Reference Applications 
To guide the development of Space ROS we have defined a set of Design Reference Applications (DRAs). These 

are designed to serve as an early assessment of existing (and missing) ROS features for space applications. They will 
also help identify the driving attributes of Space ROS to achieve “typical” / projected space robotic systems. These 
DRAs, shown in Figure 4, include Cargo Offloading, Resource Prospecting, Site Preparation, and Orbital Station 
Unpressurized Robotics. To help guide the development of Space ROS we worked to define a basic description for 
each DRA, identified and explored their key robotic components and identified technical attributes that a robotic 
infrastructure supporting that DRA needs to accommodate. The following technical attributes were identified for 
focus: Perception, Planning, Mobility, Manipulation, Control and Coordination, and Communications. The 
descriptions as well as a detailed listing of the technical attributes are described below. 

 
Figure 4: Space ROS Design Reference Applications 

Figure 3: NASA RASSOR that uses ROS2 for 
Development 
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1. Cargo Offloading 
A robotic crane system on a lander lifting, translating, and depositing cargo from lander deck to surface with 

mission control in the loop 
 

2. Resource Prospecting 
A mobile robotic resource prospector with instruments and a drill performing a survey to characterize regions for 

amenability for later resource extraction with a data relay and semi-autonomous control 
 

3. Site Preparation  
A team of robotic regolith movers and assemblers performing terrain preparation and foundational construction in 

support of advanced surface operations with remote Earth based supervision  
 

4. Orbital Station Unpressurized Robotics 
An external (unpressurized) service robot tasked with operations involving station components and visiting 

vehicles in support of an orbital space station with local crew member operation  

Table 1: Summary of Technical Attributes of Space ROS DRAs 
 Cargo 

Offloading 
 

Resource Prospecting 
 

Site 
Preparation 

 

Orbital Station 
Unpressurized Robotics 

 

Perception 

• Payload location 
• Lander structure 

perception 
• Surface 

characterization 

• Natural terrain 
characterization 
(traversability) in low light 
(lunar) 
• Detection of suitable drive 

paths and sampling sites 
• Novel feature/signal 

detection 

• Site 
characterization, 
including terrain 
volumetric 
assessments 
• Terrain mechanical 

resistance, mass 
• Other robot 

detection 
 

• Proprioception (self-
configuration) 
• Obstacle detection (module hulls, 

visiting vehicles, external 
payloads and equipment, 
astronauts) 

• Force/moment detection 
(contact) 

Planning 

• Manipulator 
trajectory planning 
• Payload surface 

placement planning 

• Traversal planning 
considering remote sensing 
(resource maps), lighting, 
communications 
• Activity planning 

considering battery state of 
charge, intended activities 
and resource costs 

• Robot team-based 
excavation, 
deposition and 
leveling planning 
• Local route 

planning 
• Activity planning 

considering battery 
state of charge, 
intended activities 
and resource costs 

• Arm trajectory planning 
• Task planning 
 

Mobility 

None • Control under rover 
kinematics and surface 
terramechanics 
• Terrain obstacle avoidance 
• Instrument, manipulator 

and/or drill placement 

• Control under rover 
kinematics and 
significant surface 
interactions 
• Terrain obstacle 

avoidance 
• Tool / manipulator 

placement and 
control under 
motion 

• Control under arm kinematics, 
base contact and payload mass 
properties 
• Station obstacle avoidance 

 

Manipulation 
• Payload grapple • Possible active regolith 

interaction (scooping, 
scraping) 

• Positing and 
assembly of sit 
elements 

• Closed-chain grappling/initial 
contact, ungrappling 
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• Payload translation 
under gravity and 
dynamics 
• Payload surface 

placement amongst 
terrain features 

• Drilling / subsurface access 
 

• Possible active 
regolith interaction 
(scooping, scraping) 
 

• Free-flyer grappling/initial 
contact, release 
• Maneuvering “payloads” under 

arm kinematics and joint 
payload/station/arm contact 
avoidance, force and torque limits 
• Emergency halt in face of 

unexpected contact or resistance 

Control and 
Coordination 

• Earth-based human 
supervision 
• Interleaved lander 

and robotics tasks 
(e.g. payload 
umbilical and 
mechanical release) 
• Possible payload 

health monitoring 
before/during/after 
crane operation 

• Earth-based human 
supervision 
• Rover, instrument, 

manipulator and/or drill 
coordinated control 
•  

• Robot team 
coordination (loose 
and potentially tight 
coordination) 
• Earth-based human 

supervision 
•  

• Earth-based human supervision 
• Interleaved lander and robotics 

tasks (e.g. payload umbilical and 
mechanical release) 
• Possible payload health 

monitoring before/during/after 
crane operation 

Communications 

• Crane-Lander: 
hardline (serial, 
Ethernet) 
• Payload-Lander: 

hardline (via 
severable umbilical) 
• Lander-Mission 

Control: RF 
 

• Prospector-Instruments: 
hardline (serial, Ethernet) 
• Prospector-Drill: hardline 

(serial, Ethernet) 
• Prospector-Mission 

Control: RF (direct-to-
Earth) 
• Prospector-Comm Relay: 

RF 
• Comm Relay-Mission 

Control: RF 

• Robot-Robot: RF / 
WiFi 
• Robot-Mission 

Control: RF 
 

• Station-Manipulator: hardline 
• Station-Visiting Vehicle: RF 

and/or hardline (state-dependent) 
• Station-Crew Workstation: 

hardline 
• Station-ORU: hardline (via 

standard quick connect/disconnect 
interface) 

 

C. Community Input 
To gauge the community interest in Space ROS and guide its development. The Space ROS team we solicited 

feedback on the Space ROS concept from the space robotics and autonomy community through a NASA RFI. 
Responses were received from 30 companies, universities, and individuals from many different countries as shown in 
Figure 5. 

 
Figure 5: Space ROS RFI Respondent Demographic Summary 

Based on the responses to this here is significant interest in a version of ROS2 that can support space systems and 
robotics. Some key take aways were: 

• Operating in a resource constrained environment is critical  
• Interactions with embeded systems is a concern for many respondents 
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• Security is important to organizations working with the DoD 
• Documentation and examples are a key to adoption 
• A significant portion of respondents are interested in supporting the development community 

 
To augment the technical attributes from the DSAs and guide future Space ROS development the team also 

requested feedback from industry on their use of ROS/ROS2, their efforts developing robotic systems, and future 
objectives for those systems. We then anonymized this data and generated statistics based on the responses which are 
summarized in Figure 6. 
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Figure 6: RFI Statistics on Technical Parameters for Robotic Systems 
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IV. Implementation  

A. Safety Approach 
The intent of the Space ROS software development effort is to build a workflow that aligns with established safety-

critical software standards such as NASA NPR 7150.2 and DO-178C. This will not include flight certification for a 
particular class of mission but updates to the framework and surrounding process that would accelerate that 
certification if Space ROS was selected as part of a future mission solution. The current Space ROS framework 
includes updates to the ROS2 codebase to improve the memory safety and infrastructure tools that support, continuous 
integration and artifact / document generation for supporting software qualification activities. Finally, plans for 
Verification and Validation (V&V) have been developed based on previous NASA V&V efforts to lay the groundwork 
for future development and potential certification efforts.  
 

1. ROS2 Safety Updates 
The major update that is required to align ROS2 with safety critical software standards is to improve the memory 

handling.  This was achieved in Space ROS by leveraging a memory pool developed using the polymorphic allocator 
introduced in the C++ 17 Standard. [3] This allows for an initial allocation of memory that can be used by what would 
have previously been dynamic memory allocations in the standard ROS2 implementation. This allocation technique 
currently doesn’t apply to the communications middleware, however the ROS2 middleware interface allows for 
significant middleware modification without impacting the client applications and the ePromisa Fast DDS library that 
is used as the default ROS2 middleware implementation can be configured to memory preallocation. [4] [5] 

 
2. Infrastructure and Tooling 
Open-source efforts like ROS2 have the potential to produce incredibly powerful tools, but there is generally a 

significant discrepancy between the level of planning and documentation produced and what is expected for safety 
critical flight qualified software. Therefore, one of the key efforts of the Space ROS effort has been developing the 
infrastructure and tooling to support development. The objective for the system’s pipeline for development is shown 
in Figure 7. The current version of this pipeline and the surrounding infrastructure that is currently deployed on the 
Space ROS GitHub repository. This design largely follows the best practices of open source development with 
additional focus on software requirements and static analysis described in the following paragraphs. 
  

 

Figure 7: Target Development and Continuous Integration Pipeline for Space ROS 
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Requirements management in aerospace software development is typically a highly managed process using a strict 
process and proprietary tools. Requirements for flight software systems must be highly detailed, with multiple levels 
describing abstract needs to detailed software behavior. This detail is used to support the system V&V and certification 
so traceability between the requirements and software codebase is frequently desired. In comparison open source 
development rarely has strictly maintained formal requirements and those that are generated frequently become out of 
date. The processes of developing and maintaining requirements is often considered “heavyweight” and because open 
source efforts rely on soliciting contributions from the community processes that make contributing more cumbersome 
are frequently counterproductive. Additionally, processes that require property software that is frequently expensive 
and opaque is largely incompatible with open source.  

To address these challenges the Space ROS has worked to develop a requirements management process that 
balances the need for requirements management with the ease of maintenance and contribution while maintaining 
compatibility with open source tools. The resulting process, illustrated in Figure 8, leverages two open source 
requirements management tools Doorstop and FRET. Doorstop is a tool for managing requirements and traceability 
in a Git based workflow. [6] FRET, or the Formal Requirements Elicitation Tool, was developed by NASA Ames 
Research Center to define well-structured and testable requirements using a restricted set of natural language, named 
FRETISH. [7] Doorstop allows users to generate and submit requirements to the Space ROS Git repositories that can 
be reviewed and accepted via pull requests. It also allows for the generation or reports for requirements traceability. 
The requirements managed by Doorstop can then be synchronized with FRET using tooling developed by the Space 
ROS team. FRET allows for the validation of requirements that are written in FRETISH to be validated and for the 
generation of source code tests based on those requirements. These tests can then be added to Space ROS applications 
to enable real time verification of software performance.   

 

Figure 8: Space ROS Git Based Requirements Workflow using FRET and Doorstop 

 

To help bring the Space ROS codebase and the code for desired packages in line with the appropriate standards 
the Space ROS team has implemented a static analysis stage into the build system. Static analysis increases code 
quality by identifying potential errors and provides artifacts related to code coverage and modified condition/decision 
coverage (MC/DC) testing supporting V&V efforts. Currently two open source static analysis tools developed by 
NASA have been implemented: Cobra that was originally developed for JPL and IKOS (Inference Kernel for Open 
Static Analyzers) originally developed by ARC. [8] [9] Cobra provides static analysis capability that works well for 
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large code bases with fast analysis of general code patterns, common coding flaws, or coding rule compliance. IKOS 
is a static analysis framework, based on the Theory of Abstract Interpretation, that utilizes LLVM for detecting and 
proving the absence of runtime errors in C and C++ programs. 

Both tools have the capability to output the results of their static analysis tools generate SARIF output, A JSON-
based exchange format for the output of static analysis tools. [10] The team has added a filtering capability to avoid 
duplicate issues for the analysis that result from combining multiple static analysis tools. Currently, the system is 
capable of removing identical issues, and adding the capability to remove semantic equivalent warnings and errors is 
on the roadmap. In order to improve the developer experience working with the results of the static analysis tools the 
team has developed the Space ROS Dashboard and SARIF viewer. [11] This extension, a screenshot of which can be 
seen in Figure 9, provides insight into static analysis, code coverage, build status, issue burndown.  

 

Figure 9: Space ROS SARIF Result Dashboard 

 
3. Additional Verification and Validation Planning 
In addition to all the tooling described above the Space ROS team has worked to develop a set of V&V plans that 

will be released for Space ROS. The objective of these plans is to lay out a path for the further development of 
requirements, testing and validation for Space ROS to streamline the certification process for Space ROS if it was 
selected as the infrastructure for a future mission. The certification process is time consuming and requires significant 
investment from a mission. These preexisting plans should lower the barrier to selecting Space ROS for missions that 
are considering options for space based robotic operations.  

B. Demonstrations 
The Space ROS team has developed an initial set of demonstrations for Space ROS that are available in the Space 

ROS GitHub repository. [12] These demonstrations correspond to the Orbital Station Unpressurized Robotics and 
Resource Prospecting DRAs. These demonstrations illustrate Space ROS and ROS2 compatible packages being used 
for space robotics applications and illustrates the compatibility with traditional ROS tooling such as Gazebo. [13] 



12 
 

 

V. Benchmarking 

A. Benchmarking Scope 
To quantify the performance of Space ROS when applied to more complex tests that 

are representative of full space-relevant mission applications Space ROS has been 
deployed on the Distributed Spacecraft Autonomy (DSA) testbed for scalability testing 
and benchmarking at ARC. This testbed, shown in Figure 11 is made up of multiple 
networked units of flight-like platforms such as the Unibap iX5-100, the Diligent 
ZedBoard (a development platform for the Zynq 7020 which is used in flight processors 
such as the Xiphos Q7), and the NVIDA Jetson TX2. An existing code base that will 
be deployed as part of a DSA experiment on the upcoming NASA Starling mission was 
selected as a starting point for this benchmarking effort. The Starling mission is a swarm 
of four spacecraft that are sharing data to compute Total Electron Count (TEC) statistics 
from GPS data, making it a characteristic space-based distributed processing challenge 
for implementation with Space ROS. [14] 

 The DSA applications were originally implemented using NASA’s cFS as a 
software framework and RTI’s Connext DDS Micro for communications and designed 
to test the scalability of distributed networking in space by taking TEC data, sharing it 
between spacecraft through a Comm Application, and combining the data in an 
Autonomy application that generates plans form monitoring GPS performance. The 
data flow for the DSA applications is shown in Figure 12. [15] The Space ROS 
implementation of the system is substantially simpler because it can utilize the built in 
DDS functionality of Space ROS and consequently doesn’t require a Comm app. We 
plan to characterize the performance parameters described in Table 2. Sample results 
showing memory and CPU usage from the benchmarking are shown in Figure 13 and 
Figure 14. 

Figure 10: Space ROS Demos based on the Orbital Station Unpressurized Robotics and Resource 
Prospecting DRAs with Canada Arm and Perseverance as Demonstration Platforms 

Figure 11: NASA ARC DSA Testbed 
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Figure 12: Data Flow for the Distribute Space Autonomy Applications 

 

Table 2: Summary of DSA Metrics to be Collected for Benchmarking 

Test Description Metric Recorded Metric Details 

Message passing tests using but a 

fully connected and linear mesh 

network with: 

Ideal, 10% loss, 50% loss, and 90% 

loss, 100 ms latency and 500 ms 

latency network configurations 

Deployed Application Size DSA Apps + Space ROS Compiled File Size 

CPU Utilization Space ROS CPU Utilization, max, min, mean, variance 

Memory Usage Space ROS Memory Utilization, max, min, mean, variance 

Topic Latency Latency between nodes reward and assignment messages, max, 
min, mean, variance 

Inter Container Latency Latency between AUTO nodes Auto Sat State Message 

Inter Container Packet Loss Number of AUTO Sat State Messages not received. 

Total State Messages Ignored 
When a message is delayed to long it is just ignored so this 
combined both dropped packets and ones whose latency was too 
large. 

 

 

 

Figure 13: Memory Usage in Bytes of Space ROS Benchmarking Node 
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We are also working to develop an open source community benchmark. The objective of this benchmark will be 
to answer the questions “Will Space ROS run on my processor?” and “How will Space ROS perform form my 
application?”. We plan to publish this benchmark and the tolling to run it and publish the results to the Space ROS 
GitHub repository. The Space ROS team  will solicit and aggregate benchmarking tests from the community and 
publish the results on the Space ROS website. 

VI. Conclusion 

A. Summary 
Space ROS will provide an open-source reliable and reusable software framework for the development of new 

space robotic applications. Adoption of this framework will accelerate the development and deployment of new 
robotic applications for space and reduce the full life-cycle costs of future robotic systems. The Space ROS team has 
made substantial progress in enhancing ROS2 to build an initial version of Space ROS that is now publicly available. 
This includes new features such as enhanced memory safety, new tooling for requirements management and static 
analysis, and demonstrations of the system applied to characteristic applications. We have provided initial 
benchmarking data that we will seek to expand in the coming months.  

B. Space ROS Community Outreach 
The Space ROS team is working with Open Robotics to develop community standards and governance guidelines 

to allow for more members of the space robotics and flight software communities to get involved with the project. If 
you are interested in being involved, please reach out to the authors. If you are interested in contributing, we have 
open sourced the code and will be accepting pull requests.  

References 
 
[1]  National Aeronautics and Space Administration, "NASA Procedural Requirements," 3 August 2017. [Online]. 

Available: https://www.nasa.gov/offices/ogc/general_law/npd19009a.html. [Accessed 1 May 2022]. 
[2]  W. Bryan, "2020 NASA Technology Taxonomy," National Aeronautics and Space Administration, 11 MARCH 

2021. [Online]. Available: https://www.nasa.gov/offices/oct/taxonomy/index.html. [Accessed 1 MAY 2022]. 
[3]  N. M. Josuttis, C++ 17: The Complete Guide, Nicolai Josuttis, 2019.  
[4]  D. Thomas, "ROS 2 middleware interface," Open Source Robotics Foundation, Inc., 2019. [Online]. Available: 

https://design.ros2.org/articles/ros_middleware_interface.html. 
[5]  eProsima, "MemoryManagementPolicy," 2019. [Online]. Available: https://fast-

dds.docs.eprosima.com/en/latest/fastdds/api_reference/rtps/resources/MemoryManagementPolicy.html. 

Figure 14: CPU Usage in Hz of Space ROS Benchmarking Node 



15 
 

[6]  J. Browning and R. Adams, "Doorstop: Text-Based Requirements Management Using Version Control," 
Journal of Software Engineering and Applications, no. 7, pp. 187-194, 2014.  

[7]  D. Giannakopoulou, A. Mavridou, J. Rhein, T. Pressburger, J. Schumann and N. Shi, "Formal requirements 
elicitation with FRET," in International Working Conference on Requirements Engineering: Foundation for 
Software Quality (REFSQ-2020)., 2020.  

[8]  G. J. Holzmann, "Cobra: fast structural code checking (keynote)," in Proceedings of the 24th ACM SIGSOFT 
International SPIN Symposium on Model Checking of Software, 2017.  

[9]  G. Brat, J. A. Navas, N. Shi and A. Venet, "IKOS: a Framework for Static Analysis based on Abstract 
Interpretation," in nternational Conference on Software Engineering and Formal Methods, 2014.  

[10]  OASIS, "Static Analysis Results Interchange Format (SARIF) Version 2.0," OASIS Open, 2019. [Online]. 
Available: https://docs.oasis-open.org/sarif/sarif/v2.0/sarif-v2.0.html. 

[11]  Space ROS, "SARIF Viewer for Visual Studio Code," Github, Inc., 2022. [Online]. Available: 
https://github.com/space-ros/dashboard. 

[12]  Space ROS, "Space ROS Demos," 2022. [Online]. Available: https://github.com/space-ros/demos. 
[13]  Open Robotics, "GAZEBO," 2022. [Online]. Available: https://gazebosim.org/home. 
[14]  L. Hall, "What is Starling?," NASA, 3 August 2022. [Online]. Available: 

https://www.nasa.gov/directorates/spacetech/small_spacecraft/starling/. 
[15]  N. C. J. F. Daniel Cellucci, "Distributed Spacecraft Autonomy," in AIAA Ascend, Virtual, 2020.  
 
 

 


